時間:2021年07月24日 分類:經濟論文 次數:
摘要:針對單一機制的灰狼算法易陷于局部最優、收斂速度慢的問題,提出了一種改進的灰狼優化算法來解決實際鐵路物流配送中心選址。首先,在基本的灰狼優化算法上,引入佳點集理論初始化種群,提高了初始種群的多樣性;然后,利用差值剔除策略,增加全局尋優性,達到一種高效的尋優模式。仿真實驗結果表明:與標準的灰狼算法相比,所提出的改進灰狼優化算法適應度值提高了3%,在10個測試函數中最優值精度可最多提高個單位;與粒子群優化(PSO)算法、差分進化(DE)算法、遺傳算法(GA)比較,其運行速度分別提高了39.6%、46.5%、65.9%,選址速度也明顯提高,可用于鐵路物流中心選址。
關鍵詞:鐵路運輸;物流;配送中心選址;灰狼優化算法;佳點集
引言近年來,市場各種類型的物流形式都在不斷地擴大著其服務的范圍,爭取實現物流中心的最大輻射范圍和最佳利用率。鐵路物流配送中心作為物流體系的重要基礎設施,它具有速度快、費用低、運量大、連續性好的優點,在交通和物流業中發揮重要作用。鐵路物流中心的建設對提升鐵路貨物運輸服務品質、提供鐵路物流可持續發展的基礎設施具有重要意義[1]。
國內學者對于物流選址的問題進行了大量的研究分析。傳統的求解方法主要有三種,分別是分支定界法、重心法、與拉格朗日松弛法[2]。其中,分支定界法常用來解決小規模選址問題;重心法主要用于求解單一物流配送中心選址問題拉格朗日松弛法則是可以求取中等規模問題的次優解。但是由于鐵路物流配送中心選址模型是帶有復雜約束的非線性模型屬于典型的NPhard問題[3],而傳統的群智能算法,像基本灰狼優化(GreyWolfOptimizer,GWO)算法在迭代后期易陷于局部最優并且收斂精度不高[4],無法很好地解決鐵路物流中心選址的問題。
目前,很多研究者通過運用一些智能算法與實際選址問題相結合來研究這個問題,如:袁群通過遺傳算法和禁忌搜索算法相結合,并用貪婪算法改進基本遺傳算法來有效地避免早熟及局部最優現象,提高了求解物流選址最優解的效率[5];李茂林[6]為了解決傳統猴群算法全局收斂度低的問題,通過非線性調節因子和lateral變異策略對算法進行改進,最后將改進后的猴群優化算法用于物流配送中心選址的實際問題中;生力軍[7]針對經典粒子群算法在解決物流選址問題時易早熟收斂并且只能得到局部最優解的問題,提出了量子粒子群算法來求取物流配送中心選址的最優解;李小川等[8]將人群搜索算法中的行為意識引入煙花算法,來避免基本煙花算法魯棒性差的缺陷。
盡管上述優化算法可以求得所需解,但單一機制的群智能優化算法無法滿足求解具有多個配送點與需求點的鐵路物流配送中心位置的需要,因此本文提出一種改進的灰狼優化算法。基本灰狼優化(GreyWolfOptimizer,GWO)算法是Mirjalili等[9]提出的一種新調整參數少的群體智能算法,它原理簡單并且易于實現,但容易在迭代后期陷于局部最優,影響收斂速度及精度[10]。因此本文從尋找最佳的鐵路物流配送中心位置出發,以求解31個需求點個配送中心的中等規模鐵路物流中心選址為模型,提出一種帶有佳點集和差值剔除策略的改進灰狼優化(ImprovedGreyWolfOptimization,IGWO)算法,最后將改進的灰狼優化算法用于求解中等規模的鐵路物流配送中心選址問題上。
1鐵路物流中心選址模型
在鐵路物流中心選址問題中,由于鐵路物流中心自身的特殊性,一般情況下鐵路物流中心為中大規模,運輸主要以大宗貨物為主,適宜遠距離運輸,所以鐵路物流中心的選擇很大程度上決定了鐵路物流運輸的發展[11]。
1.1鐵路物流中心選址問題模型假設
為了構建適當的模型,提出以下假設:1)在已有的鐵路物流中心所輻射到的服務及配送區域的需求總量上,物流中心自身的負荷工作能力恒滿足其配送及服務區域的總需求量。2)在物流中心所限區域范圍內,滿足一一對應的服務。3)將鐵路物流中心與其配送和服務區域的需求點之間的距離以及產生的費用作為主要考慮因素。4)在費用計算中加入一個懲罰值,當物流中心與配送點距離大于3000km時需要考慮到這個懲罰值。5)以降低距離產生的費用為目標,通過限定規范營運費用,可有效控制運營成本。
1.2鐵路物流中心選址問題模型構建
基于以上五點假設,通過具有普遍性和代表性的物流選址模型問題影響因素分析,從多個備用鐵路物流配送中心中找出個物流配送中心向多個需求點進行配送服務。
2標準灰狼優化算法
灰狼是一種以群居生活為主的頂級食肉動物,它們有著嚴格的社會等級制度[13]。通常每個群體中有~12只狼,其中第一層稱為α,是灰狼種群中的最高領導者,負責決策各項事務;第二層稱為β,在整個種群中協助頭狼α;第三層稱為δ,主要負責偵察以及狩獵等事務,嚴格遵守α和β的指令;第四層稱為ω,它聽從于其他所有階層的指令。
3改進的灰狼算法
在基本的灰狼算法中,初始種群是隨機產生的,并且根據公式來進行位置更新,但是每次迭代前后并未進行信息交換。針對以上基本灰狼算法的不足,提出如下改進的灰狼優化IGWO算法。
3.1基于佳點集的種群初始化方法初始種群在搜索空間內均分布能夠使得種群具有更強的多樣性,進而有助于提高算法的全局搜索能力。用佳點集理論的取點法代替隨機法可以使個體在空間中更加可靠地均勻分布,提高算法穩定性[14]。比起最初灰狼算法隨機產生的辦法,佳點集初始種群更具有穩定性和遍歷性。
4數值仿真
為測試本文提出的改進灰狼優化算法(IGWO)的優化效果,進行大量的atlab數值仿真實驗,并且與基本GWO進行了比較。選取了10個測試函數,兩種算法種群規模均取30,最大迭代次數取500。
鐵路論文范例:復雜地質鐵路隧道敞開式TBM施工挑戰及思考
5鐵路物流中心物流選址比對
為了驗證本文所提IGWO的優化可行性,本文獲取31個需要鐵路物流配送的城市地理位置信息,選取式(6)為目標函數,建立物流配送中心選址數學模型,并將IGWO與基本粒子群優化(ParticleSwarmOptimization,PSO)算法、灰狼優化(GreyWolfOptimizer,GWO)算法、差分進化(DifferentialEvolution,DE)算法與遺傳算法(GeneticAlgorithm,GA)的迭代效果進行比對。
結語針對基本灰狼算法(GWO)求解鐵路物流配送中心的問題的局限性,本文提出了一種改進的灰狼優化算法即IGWO。在WO基礎上引入了佳點集來優化初始種群,使初始種群更加具有遍歷性,搜索能力加強。在基本灰狼算法位置更新中加入了差值剔除策略增加擾動因素,加快了收斂速度,并且有效避免了陷入局部最優,提高了局部尋優能力。
在對14個標準測試函數的實驗仿真表明,本文提出的IGWO有效增強了優化效率、收斂速度和魯棒性。然而,IGWO也有自身的局限性.對于某些測試函數實驗結果并不是很理想,可見IGWO對于部分函數不適合。但通過加入IGWO優化鐵路物流選址模型,是對于求解鐵路物流中心選址的一種有效補充,可以有效降低運營成本。下一步研究可在模型的選取上進行優化,使IGWO在物流選址問題或更多工業工程問題中有更深層次的優化性。
參考文獻
[1]何西健膠州鐵路物流中心建設方案優化研究[J].鐵道運輸與經濟,2020,42(10):2731(HStudyontheoptimizationoftheconstructionplanofJiaozhourailwaylogisticscenter[J].RailwayTransportandEconomy,2020,42(10):2731)
[2]李磊楊愛峰唐娜陳亞波基于多種群搜索的PSO的物流配送中心尋址求解[J].合肥工業大學學報自然科學版),2017,40(2):266271.(LIL,YANGAF,TANGN,etalSearchbasedPSOlogisticsanddistributioncenterinaddressingavarietyofgroupstosolve[J]HefeiUniversityofTechnology(NaturalScience),2017,40(2):266271
[3]尚月基于改進螢火蟲算法的配送中心選址問題研究[D].開封:河南大學2018HANGY.Researchonlocationselectionofdistributioncenterbasedonimprovedfireflyalgorithm[D].KaifengHenanUniversity,2018
[4]徐松金龍文嵌入遺傳算子的改進灰狼優化算法[J].蘭州理工大學學報,2016,42(4):102108.(XUSJ,LONGW.Improvedgraywolfoptimizationalgorithmembeddedwithgeneticoperator[J].JournalofLanzhouUniversityofTechnology,2016,42(4):102108.)
[5]袁群左弈基于改進混合遺傳算法的冷鏈物流配送中心選址優[J].上海交通大學學報201650(11)17951800.(YUANQ,ZUOY.Locationbasedonimprovedhybridgeneticalgorithmexcellentcoldchainlogisticsdistributioncenter[J]ShanghaiJiaotongUniversity,2016,50(11):17951800
作者:郝芃斐,池瑞,屈志堅,涂宏斌,池學鑫,張地友