時間:2016年03月01日 分類:推薦論文 次數:
電阻點焊過程是一個高度非線性,既有多變量靜態疊加又有動態耦合,同時又具有大量隨機不確定因素的復雜過程。這種復雜性使得傳統方法確定最佳工藝參數存在操作復雜、精度低等缺陷。
摘要:本文提出了一種利用神經網絡優化點焊機的參數方法。以實驗數據為樣本,通過神經網絡建立焊接工藝參數與焊接質量的之間的復雜模型,利用神經網絡對工藝參數進行優化。充分發揮神經網絡的非線性映射能力。仿真顯示了該方法的優越性和有效性。
關鍵詞:電阻點焊;神經網絡;消音鋸片
0序言
本文通過深入研究提出了一種神經網絡優化消音鋸片電阻點焊工藝參數方法。以試驗數據為樣本,通過神經網絡,建立焊接工藝參數與焊接性能之間的復雜模型,充分發揮神經網絡的非線性映射能力。為準確預測點焊質量提高依據。在運用試驗手段、神經網絡高度非線性擬合能力結合的方式,能在很大程度上克服傳統方法的缺陷,完成網絡的訓練、檢驗和最優評價,為電阻點焊過程的決策和控制提供可靠依據。
1原理
人工神經網絡是用物理模型模擬生物神經網絡的基本功能和結構,可以在未知被控對象和業務模型情況下達到學習的目的。建立神經網絡是利用神經網絡高度并行的信息處理能力,較強的非線性映射能力及自適應學習能力,同時為消除復雜系統的制約因素提供了手段。人工神經網絡在足夠多的樣本數據的基礎上,可以很好地比較任意復雜的非線性函數。另外,神經網絡的并行結構可用硬件實現的方法進行開發。目前應用最成熟最廣泛的一種神經網絡是前饋多層神經網絡(BP),通常稱為BP神經網絡。
神經網絡方法的基本思想是:神經網絡模型的網絡輸入與神經網絡輸出的數學關系用以表示系統的結構參數與系統動態參數之間的復雜的物理關系,即訓練。我們發現利用經過訓練的模型進行權值和閾值的再修改和優化(稱之為學習)時,其計算速度要大大快于基于其他優化計算的速度。
BP神經網絡一般由大量的非線性處理單元——神經元連接組成的。具有大規模并行處理信息能力和極強的的容錯性。每個神經元有一個單一的輸出,但可以把這個輸出量與下一層的多個神經元相連,每個連接通路對應一個連接權系數。根據功能可以把神經網絡分為輸入層,隱含層(一或多層),輸出層三個部分。設每層輸入為ui(q)輸出為vi(q)。同時,給定了P組輸入和輸出樣本 ,dp(p=200)。
(6)
該網絡實質上是對任意非線性映射關系的一種逼近,由于采用的是全局逼近的方法,因而BP網絡具有較好的泛化的能力。
我們主要是利用神經網絡的非線性自適應能力,將它用于消音鋸片的電阻點焊過程。訓練過程是:通過點焊實驗獲得目標函數與各影響因素間的離散關系,用神經網絡的隱式來表達輸入輸出的函數關系,即將實驗數據作為樣本輸入網絡進行訓練,建立輸入輸出之間的非線性映射關系,并將知識信息儲存在連接權上,從而利用網絡的記憶功能形成一個函數。不斷地迭代可以達到sse(誤差平方和)最小。
我們這次做的消音金剛石鋸片電焊機,通過實驗發現可以通過采用雙隱層BP神經網絡就可以很好的反應輸入輸出參數的非線性關系。輸入神經元為3,分別對應3個電阻點焊工藝參數。輸出神經元為1,對應焊接質量指標參數。設第1隱含層神經元取為s1,第2隱含層神經元取為s2。輸入層和隱含層以及隱層之間的激活函數都選取Log-Sigmoid型函數,輸出層的激活函數選取Pureline型函數。
2點焊樣本的選取
影響點焊質量的參數有很多,我們選取點焊時的控制參數,即點焊時間,電極力和焊接電流,在固定式點焊機上進行實驗。選用鋼種為50Mn2V,Φ600m的消音型薄型圓鋸片基體為進行實驗。對需要優化的參數為點焊時間,電極力和焊接電流3個參數進行的訓練。最后的結果為焊接質量,通常以鋸片的抗拉剪載荷為指標。
建立BP神經網絡時,選擇樣本非常重要。樣本的選取關系到所建立的網絡模型能否正確反映所選點焊參數和輸出之間的關系。利用插值法,將輸入變量在較理想的區間均勻分布取值,如果有m個輸入量,每個輸入量均勻取n個值(即每個輸入量有m個水平數), 則根據排列組合有nm個樣本。對應于本例,有3個輸入量,每個變量有5個水平數,這樣訓練樣本的數目就為53=125個。
我們的實驗,是以工人的經驗為參考依據,發現點焊時間范圍為2~8s,電極力范圍為500~3000N,點焊電流范圍為5~20kA時,焊接質量比較好。我們先取點焊電流,電極力為定量,在合理的范圍內不斷改變點焊時間,得到抗拉剪載荷。如此,可以得到不同點焊電流和電極力的抗拉剪載荷。根據點焊數據的發布情況,我們共選用200組數據。部分測試數據如表1:
神經網絡建模的關鍵是訓練,而訓練時隨著輸入參數個數的增加樣本的排列組合數也急劇增加,這就給神經網絡建模帶來了很大的工作量,甚至于無法達到訓練目的。
3神經網絡
我們用200組訓練樣本對進行神經網絡訓練,以err_goal=0.01為目標。調用Matlab神經網絡工具箱中的函數編程計算,實現對網絡的訓練,訓練完成后便得到一個網絡模型。
程序
x1=[2.1 2.5 3 3.5 4……]; %點焊時間輸入,取200組
x2=[1.3 1.5 1.9 2.1 2.3……];%電極力輸入,取200組
x3=[9 10 11 12 13……];%點焊電流輸入,取200組
y=[2756 3167 3895 3264 2877……]; %輸出量,取200組
net=newff([1 10;0.5 3;5 20],[10 10 1],{‘tansig‘‘tansig‘‘purelin‘});
%初始化網絡
net.trainParam.goal = 0.01;%設定目標值
net=train(net,[x1;x2;x3],y);%訓練網絡
figure; %畫出圖像
選取不同的s1,s2,經過不斷的神經網絡訓練,發現當s1=8,s2=6時,神經網絡可以達到要求。工具箱示意圖如下圖1。
圖 1工具箱示意圖
工具箱示意圖非常清晰地表示了本實驗的神經網絡的輸入,輸出以及訓練的過程。
神經網絡的訓練結果,如圖2所示:
圖2神經網絡的學習過程
圖中可以看出雙層網絡訓練的sse在訓練100次時,已經接近0.0001,效果較理想。
為了驗證經過訓練的網絡模型的泛化能力,在輸入變量所允許的區域內又另選多個樣本進行了計算。發現:利用BP神經網絡模型計算的測試輸出與期望輸出值相符,誤差小于2%。
在已經訓練好的網絡中找出最大值:
for i=2:10 %點焊時間選擇
for j=0.5:0.1:3%電極力選擇
fork=5:0.1:20%點焊電流選擇
a=sim(net,[i,j,k]);%仿真
ifan %比較仿真結果與最大值,取最大值n=a;
i(1)=i;%最大值的時間
j(1)=j;%最大值的電極力
k(1)=k; %最大值的電流
end
end
end
end
將i(1),j(1),k(1)以及n輸出,n為最大值。得到點焊時間為3.4s,電極力為12.7kN,點焊電流為11.8kA,此時的抗剪拉剪載荷為4381N,為訓練結果的最大值。將點焊時間為3.4s,電極力為12.7kN,點焊電流為11.8kA在點焊機上進行實驗,得到結果為4297N。并且通過與實際的結果相比較,發現誤差也在2%以內。
4結論
1)本文采用了插值法作為選取BP神經網絡訓練樣本的方法。并且在數據變化劇烈的地方多選取了75組數據,這樣可以得到較高精度的網絡模型,使點焊模型的可行性。
2)基于此方法建立了三個點焊參數的BP神經網絡模型,而且所建的BP模型具有較高的精度,可以很好的描述了這三個點焊參數與點焊質量的映射關系。
3)由于神經網絡模型將系統結構參數與傳統動態特性參數之間的物理關系,反映為神經網絡模型的網絡輸入與網絡輸出的數學關系,因此,在神經網絡模型上進行結構修正與優化比在其他模型上更直接,簡單與高效。
本文采用神經網絡的方法優化復合消音鋸片的點焊工藝參數,為分析點焊質量提供了很好的輔助手段。通過與以前工藝相比較,提高了點焊質量。
參考文獻:
[1] 方平,熊麗云.點焊電流有效值神經網絡實時計算方法研究.[J].機械工程學報,2004(11).148-152.
徐明.用8089單片機測量非正弦點焊焊接電流有效值.[J].焊接技術,1995(3):12-14.
胡德安,陳鵬展,陳益平,李唐柏.基于神經網絡的點焊質量評估專家系統研究[J].新技術新工藝,2001(10):9-10.
閱讀期刊:《數字化用戶》
是國內數字化進程中的領袖雜志。當今時代是信息化時代,而信息的數字數字化用戶化也越來越為研究人員所重視。一直以來以其學術性、專業性、權威性、實用性,承擔著為政府機構 、企事業單位、各大院校以及科研機構的數字化管理、研發、技術人員提供展示科研成果、進行學術交流的重要職責。