久久人人爽爽爽人久久久-免费高清a级毛片在线播放-国产高清自产拍av在线-中文字幕亚洲综合小综合-无码中文字幕色专区

期刊名稱搜索、人工推薦、功能齊全

ACM Transactions on Knowledge Discovery from Data

SCIE
ACM Transactions on Knowledge Discovery from Data
雜志名稱:ACM數據知識發現匯刊
簡稱:ACM T KNOWL DISCOV D
期刊ISSN:1556-4681
大類研究方向:工程技術
影響因子:2.538
數據庫類型:SCIE
是否OA:No
出版地:UNITED STATES
年文章數:26
小類研究方向:工程技術-計算機:信息系統
審稿速度:約3.0個月
平均錄用比例:較易

官方網站:http://tkdd.acm.org/index.html

投稿網址:http://mc.manuscriptcentral.com/tkdd

填單可快速匹配SCI/SSCI/AHCI期刊 解答審稿周期、版面費、錄用率問題

ACM Transactions on Knowledge Discovery from Data

英文簡介

TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but not limite to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.TKDD welcomes papers that both lay theoretical foundations for data mining, big data and those that provide new insights into the design and implementation of large-scale data mining systems and tools, data mining interface tools, and data mining tools that integrate with the overall information processing infrastructure. TKDD also accepts papers that describe user and data mining developer and administration experiences and issues in large-scale real-world data mining applications. The emphasis on integration of theory and practice is an attempt to encourage authors of theory papers to consider applicability and/or implementability of the theoretical results, while encouraging authors of systems papers to reflect on the theoretical results that may have been used in building the systems and/or to offer suggestions on issues that may require theoretical treatment.TKDD also solicits focused surveys on topics relevant to TKDD. These should be deep and will sometimes be quite narrow, but should make a contribution to our understanding of an important area or subarea of databases. More general surveys that are intended for a broad-based Computer Science audience or surveys that may influence other areas of computing research should continue to go to ACM Computing Surveys. Brief surveys on recent developments in data mining research are more appropriate for ACM SIGKDD Explorations. TKDD surveys should be educational to the database audience by presenting a relatively well-established body of database research.For additional information on the types of papers TKDD will accept, see Editorial Guidelines.The international Editorial Board is composed of recognized experts in the various subareas of this field, all with a commitment to maintain TKDD as the premier publication in this active field. Papers should be submitted electronically to ACM TKDD manuscript center. The Editorial Board maintains contact with ACM's Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD), as well as with other societies, to encourage submittal of advanced and original papers. When appropriate, concise results may be submitted as technical notes; technical comments on earlier publications are welcome as well.The journal appears in the ACM Digital Library and is thus available to the many individual and institutional DL subscribers. TKDD will be also included in the SIGKDD Anthology and SIGKDD Digital Symposium Collection CDROM publications. These disparate media (print, web, CDROM, DVDROM), widely distributed, ensure that TKDD articles are easily available to knowledge discovery and data mining researchers.The existence of TKDD has helped to define the field of knowledge discovery and data mining research. It encompasses the development, formalization, and validation of abstractions and models to describe data mining applications and the design and implementation methods for knowledge discovery and automated analysis of large amount of data.

ACM Transactions on Knowledge Discovery from Data

中文簡介

TKDD歡迎關于知識發現和各種形式數據分析的全方位研究的論文。這些主題包括但不限于:數據挖掘和大數據分析的可擴展和有效算法、挖掘大腦網絡、挖掘數據流、挖掘多媒體數據、挖掘高維數據、挖掘文本、Web和半結構化數據、挖掘時空數據、社區生成的數據挖掘、社會網絡分析。分析和圖形結構化數據、數據挖掘中的安全和隱私問題、可視化、交互式和在線數據挖掘、數據挖掘的預處理和后處理、健壯和可擴展的統計方法、數據挖掘語言、數據挖掘的基礎、KDD框架和過程,以及利用DAT的新型應用程序和基礎設施。包括大規模并行處理和云計算平臺的挖掘技術。TKDD鼓勵在計算機、并行或多處理計算機或新數據設備的大型分布式網絡環境中探討上述主題的論文。TKDD還鼓勵那些描述當前數據挖掘技術無法滿足的新興數據挖掘應用程序的論文。TKDD歡迎那些既為數據挖掘、大數據奠定理論基礎,又為大規模數據挖掘系統和工具、數據挖掘接口工具和與整體信息處理基礎設施集成的數據挖掘工具的設計和實現提供新見解的論文。TKDD還接受描述用戶和數據挖掘開發人員以及大型現實數據挖掘應用程序中的管理經驗和問題的論文。強調理論與實踐的結合是鼓勵理論論文的作者考慮理論結果的適用性和/或可實現性,同時鼓勵系統論文的作者反思可能用于構建系統和/或就問題提供建議的理論結果。這可能需要理論上的處理。TKDD還要求對與TKDD相關的主題進行重點調查。這些應該很深,有時會很窄,但應該有助于我們理解數據庫的一個重要領域或子領域。針對廣泛的計算機科學受眾或可能影響其他計算研究領域的調查的更一般的調查應繼續進行ACM計算調查。對數據挖掘研究最新進展的簡要調查更適合于ACM Sigkdd的勘探。TKDD調查應該通過提供一個相對成熟的數據庫研究機構來教育數據庫的讀者。有關TKDD將接受的論文類型的更多信息,請參閱編輯指南。國際編輯委員會由該領域各子領域的公認專家組成,所有這些專家都承諾將TKDD作為該領域的首要出版物。論文應以電子方式提交給ACM TKDD手稿中心。編委會與ACM的知識發現和數據挖掘特別興趣小組(SIGKDD)以及其他協會保持聯系,鼓勵提交高級和原始論文。在適當情況下,可以將簡明的結果作為技術說明提交;也歡迎對早期出版物的技術評論。該雜志出現在ACM數字圖書館,因此可供許多個人和機構的數字圖書館用戶使用。TKDD也將被收錄在sigkdd選集和sigkdd數字研討會的cdrom出版物中。這些分散的媒體(打印、web、cdrom、dvdrom)廣泛分布,確保知識發現和數據挖掘研究人員可以輕松獲得TKDD文章。TKDD的存在有助于定義知識發現和數據挖掘研究領域。它包括抽象和模型的開發、形式化和驗證,以描述數據挖掘應用程序,以及用于知識發現和自動分析大量數據的設計和實現方法。

同類領域期刊推薦

精選同類領域期刊,熱門推薦輕松get~

SCI期刊分類

Academic journals
SCI SSCI分區查詢